Some examples involving a branch of a multiple valued function:
(4) Integrate the branch of square root

$$
f(z)=z^{1 / 2}=e^{1 / 2 \log z} \quad(|z|>0,0<\arg z<2 \pi)
$$

along the contour:

$$
C: \quad z(t)=R e^{i t} \quad(R>0,0 \leq t \leq \pi)
$$

The problem is that the integranel $f(z(t)) z^{\prime}(t)$ is not defined when $t=0$. But the function is piecewise continuous on $[0, \pi]$:

$$
\begin{aligned}
f(z(t)) z^{\prime}(t)=e^{\frac{1}{2} \log R e^{i t}} R i e^{i t} & =e^{\frac{1}{2}(\ln R+i t)} R e^{i t} \\
& =\sqrt{R} e^{\frac{1}{2} i t} R e^{i t} \\
& =R^{3 / 2} e^{3 / 2 i t}=R^{3 / 2}\left(\cos \frac{3}{2} t+i \sin ^{3 / 2} t\right)
\end{aligned}
$$

The real/im parts of the function are continuous on $(0, \pi)$ and the limits approaching 0 from the right are as expected. S. So the integrand is piecwise cont. on $[0, \pi]$ and the int egral exists. We have

$$
\begin{aligned}
\int_{C} f(z) d z=R^{3 / 2} \int_{0}^{\pi} e^{3 / 2 i t} d t & =R^{3 / 2}\left[\frac{2}{3 i} e^{3 / 2 i t}\right]_{0}^{\pi} \\
& =R^{3 / 2} \frac{2}{3 i}\left(e^{3 / 2 \pi i}-1\right)=R^{3 / 2} \frac{2}{3 i}(-i-1)
\end{aligned}
$$

(5) Integrate the principal branch of z^{i-1} :

$$
f(z)=z^{i-1}=e^{(i-1) \log z}
$$

along the contour

$$
c: \quad z(t)=e^{i t} \quad, \quad-\pi \leq t \leq \pi
$$

The curve crosses the branch cut. We rel to check if $f(z(t)) \cdot z^{\prime}(t)$ piecewise continuous on $[-\pi, \pi]$.
we have

$$
\begin{aligned}
f(z(t)) z^{\prime}(t) & =e^{(i-1) \log e^{i t}} i e^{i t} \\
& =e^{(i-1)(\ln (+i t)} i e^{i t}=e^{\left(i^{2}-i\right) t} \cdot i e^{i t}=i e^{-t} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\int_{c} f(z) d z=i \int_{-\pi}^{\pi} e^{-t} & =i\left[-e^{-t}\right]_{-\pi}^{\pi} \\
& =i\left[-e^{-\pi}+e^{\pi}\right] \\
& =2 i \sinh \pi .
\end{aligned}
$$

Estimating Contour Integrals
Lemma (Triangle Ineq. for Integrals) Suppose w: $[a, b] \rightarrow \mathbb{C}$ is piecewise continuous. Then

$$
\left|\int_{a}^{b} w(t) d t\right|^{b} \leq \int_{a}^{b}|w(t)|^{2} d t
$$

Proof. First, assume $\int_{a}^{b} \omega(t) d t=0$. Then the lemma holds since $|w(t)| \geq 0$ for all $t \in[a, b]$ and so its integral is also nonnegative. Otherwise, $\int_{a}^{b} w(t) d t \neq 0$ so we con use polar coordinates:

$$
r_{0} e^{i t_{0}}=\int_{a}^{b} \omega(t) d t
$$

Then

$$
\begin{aligned}
\left|\int_{a}^{b} w(t) d t\right| & =\left|r_{0} e^{i t_{0}}\right| \quad \int_{0}^{\text {week } \mid} \\
& =r_{0} \quad \leq \int_{a}^{b}\left|e^{-i t \cdot}\right||\omega(t)| d t \\
& =\operatorname{Re} r_{0} \\
& =\operatorname{Re}\left(r_{0} e^{i t_{0}} \cdot e^{-i t_{0}}\right) \quad=\int_{a}^{b}|w(t)| d t . \\
& \left.=\operatorname{Re}\left(\int_{u}^{b} e^{-i t_{0}} \omega(t) d t\right)\right) \\
& =\int_{a}^{b} \operatorname{Re}\left(e^{-i t_{0}} \omega(t)\right) d t
\end{aligned}
$$

Theorem (Triangle Ineq. for Contour Integrals) Suppose that C is a contour of length L and f is piecewise continuous on C. Then finite?

$$
\left|\int_{C} f(z) d z\right| \leq \max _{z \in C}|f(z)| \cdot L .
$$

Proof. Suppose $z:[a, b] \rightarrow \mathbb{C}$ parumeterizes C. By assumption $f(z(t))$ is piecewise continuous on $\{a, b\}$. Hence,

$$
\max _{z \in C}|f(z)|=\max _{t \in\{a, b]}|f(z(t))| \quad \text { is finite }
$$

because $f(z(t))$ is piecewise cont. On a closed interval. Hence,

$$
\begin{aligned}
\left|\int_{c} f(z) d z\right| & =\left|\int_{a}^{b} f(z(t)) z^{\prime}(t) d t\right| \\
& \leq \int_{a}^{b} \underbrace{|f(z(t))|\left|z^{\prime}(t)\right| d t}_{\leq \max _{z \in C}|f(z)|} \\
& \leq \max _{z \in C}|f(z)| \cdot \int_{u}^{b}\left|z^{\prime}(t)\right| d t \\
& =\max _{z \in C}|f(z)| \cdot L \cdot
\end{aligned}
$$

Example
(1) Finding an upper bound for

$$
\int_{c} \frac{z^{2}+1}{z^{3}+2} d z
$$

Semicircle radius
where C is the semicircle $z(t)=2 e^{i t}, 0 \leq t \leq \pi$
All we reed to $d o$ is find $M \geq 0$ such that

$$
\left|\frac{z^{2}+1}{z^{3}+2}\right| \leq M \quad \text { for all } \quad z \in C \text {. }
$$

Suppose $z \in C$ so that $|z|=2$. Then

$$
\left|z^{2}+1\right| \leq|z|^{2}+1=5 .
$$

Also,

$$
\left|z^{3}+2\right| \geq\left||z|^{3}-2\right|=\left|2^{3}-2\right|=6 .
$$

Together,

$$
\left|\frac{z^{2}+1}{z^{3}+2}\right| \leq \frac{5}{6} \text { for all } z \in C \text {. }
$$

Hence, $\quad\left|\int_{c} \frac{z^{2}+1}{z^{3}+2} d z\right| \leq \frac{5}{6} \cdot 2 \pi$ by the theorem.
(2) Show that

$$
\lim _{R \rightarrow \infty} \int_{C_{R}} \frac{z^{2}+z^{2}+2}{z z^{2}+1} d z=0
$$

where C_{R} is the circle $z(t)=R e^{i t}, 0 \leq t \leq 2 \pi$.
Note; the length of C_{R} is $2 \pi R$. Let $z \in C_{R}$ so that $|z|=R$. Then

$$
\left|z^{2}+z\right| \leq|z|^{2}+|z|=R^{2}+R
$$

and
then $\left|\int_{C_{R}} \frac{z^{2}+z}{z^{4}+2 z^{2}+1}\right| \leq 2 \pi R \cdot\left(\frac{R^{2}+R}{\left(R^{2}-1\right)^{2}}\right) \xrightarrow{R \rightarrow \infty} 0$ 。

Antiderivatives \& Fundamental Theorem of Contour Integrals

Suppose C is a contour joining z_{1} to z_{2}. In general, the value of the integral

$$
\int_{C} f(z) d z
$$

depends on C. For example, we have seen that

$$
\int_{c_{1}} \frac{1}{z} d z=\pi i
$$

while

$$
\int_{c_{2}} \frac{1}{z} d z=-\pi i,
$$

But we have also seen that

$$
\int_{C} z d z=\frac{z_{2}^{2}-z_{1}^{2}}{2}
$$

difference between the functions turns out to be that $f(z)=z$ has an antiderisative on \mathbb{C}, while $g(z)=\frac{1}{z}$ does not have an antiderivative on any domain containing c_{1} and c_{2}.

Definition (Antiderivative) Suppose that f is a continuous function on a domain D. An analytic function $F: D \rightarrow \mathbb{C}$ is called an antiderivative of f if $F^{\prime}(z)=f(z)$ for all $z \in D$.

Definition (Independence of Path) Let $f: D \rightarrow \mathbb{C}$ be a continuous function on a domain D and fix $z_{1}, z_{2} \in D$. If

$$
\int_{C_{1}} f(z) d z=\int_{C_{2}} f(z) d z
$$

whenever C_{1} and c_{2} are contours in D joining z_{1} to z_{2}, then the integrals of f from z_{1} to z_{2} are independent of path and we denote the unique value by

$$
\int_{z_{1}}^{z_{2}} f(z) d z_{0}
$$

So, for instance we would write

$$
\int_{z_{1}}^{z_{2}} z d z=\frac{z_{2}^{2}-z^{2}}{2}
$$

Since we have already proved the integrals of z from z_{1} to z_{2} are independent of path.

Theorem (Fund amental Theorem of Contour Integrals)
Suppose f is continuous on a domain D. The following are equivalent:
(1) f has an antiderivative $F: D \rightarrow \mathbb{C}$.
(2) For all $z_{1}, z_{2} \in D$, the integrals of f from z_{1} to z_{2} are independent of path and the unique value is given by

$$
\int_{z_{1}}^{z_{2}} f(z) d z=F\left(z_{2}\right)-F\left(z_{1}\right)
$$

(3) If C is any closed contour lying in D, then

$$
\int_{C} f(z) d z=0
$$

Proof. $((1) \Rightarrow(2))$ Suppose f has an antiderivative $F: D \rightarrow \mathbb{C}$. Let $z_{1}, z_{2} \in D$ and let C be any contour joining z_{1} to z_{2} auk lying in D.
First assume C is a smooth arc parameterized by $z:[a, b] \rightarrow C$.
Then $\frac{d}{d t}(F(z(t))=L^{\text {Set } 4 \text { PL }} F^{\prime}(z(t)) z^{\prime}(t)=\underbrace{f(z(t)) z^{\prime}(t)}_{\text {the integ road. }}$
Hence

$$
\text { (*) } \begin{aligned}
\int_{C} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t & =F(z(b))-F(z(a)) \\
& =F\left(z_{2}\right)-F\left(z_{1}\right) .
\end{aligned}
$$

Now, assume C is a contour. the $n \quad C=C_{1}+\cdots+C_{n}$ where where $\omega_{n+1}=z_{2}$
E_{i} is a smooth are joining w_{i} and w_{i+1}. Then and $w_{1}=z_{1}$

$$
\begin{aligned}
\int_{C} f(z) d z=\int_{\sum_{i=1}^{n} c_{i}} f(z) d z & =\sum_{i=1}^{n} \\
& =\sum_{i=1}^{n} F\left(w_{i+1}\right)-F\left(w_{i}\right) \\
& =F\left(w_{n+1}\right)-F\left(w_{1}\right) \\
& =F\left(z_{2}\right)-F\left(z_{1}\right) .
\end{aligned}
$$

Since $F\left(z_{2}\right)-F\left(z_{1}\right)$ de pends only on z_{1} and z_{2} we have
proved the claim.
$((2) \Rightarrow(3))$ Assume (2) and let C be any closed contour lying in the domain. Choose any 2 distinct $p t s z_{1}$ and z_{2} on C. Let c_{1} and c_{2} be contours from z_{1} to z_{2}

$$
\begin{aligned}
\text { such that } c=c_{1}-c_{2} .
\end{aligned} \begin{aligned}
& \int_{c} f(z) d z=\int_{c_{1}-c_{2}} f(z) d z \\
&=\int_{c_{1}} f(z) d z-\int_{c_{2}} f(z) d z \\
& \text { by } \\
& \text { assumption }
\end{aligned}
$$

$((3) \Rightarrow(2))$ Assume (3) and let $z_{1}, z_{2} \in D$. Suppose C_{1} and c_{2} are two contours in D joining z_{1} to z_{2}. then $C=C_{1}-C_{2}$ is a closed contour. By assumption

$$
0 \stackrel{f^{\text {by }}}{=} \int_{c} f(z) d z=\int_{c_{1}} f(z) d z-\int_{c_{2}} f(z) d z
$$

So $\quad \int_{c_{1}} f(z) d z=\int_{C_{2}} f(z) d z$ as claimed.
$((2) \Rightarrow(1))$ Assume (2) (and (3) sine they are equivalent) - I need to show is that f has an antidervative on D. Fix any point $z_{2} \in D$ and lethe

$$
F(z)=\int_{z_{0}}^{z} f(s) d s .
$$

By (2), this function is well-dafhed.

We need to show that $F^{\prime}(z)=f(z)$, that is

$$
\lim _{\Delta z \rightarrow 0} \frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z) .
$$

Let $\varepsilon>0$ and $z \in D$. Since f is continuous ut z, so $\delta>0$ suck that

$$
|s-z|<\delta \Rightarrow|f(s)-f(z)|<\varepsilon .
$$

To compute the difference quotient, let Δz be a complex number close enough to z so that $z+\Delta z \in D_{\dot{z}}$. then (both integral l

$$
\begin{aligned}
& F(z+\Delta z)-F(z)=\int_{z \text {. }}^{z+\Delta z} f(s) d s-\int_{z_{0}}^{z} f(s) d s \quad\left(\begin{array}{c}
\text { both integral } \\
\text { taken overstraight } \\
\text { line paths }
\end{array}\right) \\
& \text { line paths }
\end{aligned}
$$

Next,
PRet 4 PS

$$
\begin{aligned}
f(z)=\frac{f(z) \Delta z}{\Delta z} & =\frac{1}{\Delta z} f(z) \int_{z}^{z+\Delta z} 1 d s \\
& =\frac{1}{\Delta z} \int_{z}^{z+\Delta z} f(z) d s
\end{aligned}
$$

Now, assume Δz is is so close to z that $|\Delta z|<\delta$. It follows that $|s-z|<\delta$ for any point s on the line segment between z and $\Delta z+z$ (see picture). Here, by catimuity, $|f(s)-f(z)|<q$. Using the preceding computations and the Triangle Ire. for contour integrals, we obtain:

$$
\begin{aligned}
\left.\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z) \right\rvert\, & =\left|\int_{z}^{z+\Delta z} f(s) d s-\int_{z}^{z+\Delta z} f(z) d s\right| \\
& =\frac{1}{|\Delta z|}\left|\int_{z}^{z+\Delta z} f(s)-f(z) d s\right| \\
& \left.\leq \frac{\text { T.I. }}{}\left|\frac{1}{|\Delta z|} \varepsilon \cdot\right| \Delta z \right\rvert\, \text { esth of from } z \text { to } z+\Delta z \\
& =q .
\end{aligned}
$$

We have shown that given $\varepsilon>0$, there exists $8>0$ such that $|\Delta z|<\delta$ implies $\left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|<\varepsilon$.
That is $F^{\prime}(z)=f(z)$ for all $z \in D$.

